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Signal Detection Theory (SDT) can be used to assess decision making performance in tasks that are
not commonly thought of as perceptual. SDT takes into account both the sensitivity and biases in
responding when explaining the detection of external events. In the standard SDT tasks, stimuli
are selected in order to reveal the sensory capabilities of the observer. SDT can also be used to

describe performance when decisions must be _,as to the classification of e__ ily. a_d___lia_y
sensed stimuli. Numbers are sumult mat are nummauy anectea t)y sensory processing ea_u
belong to meaningful categories that overlap. Multiple studies have shown that the task of
categorizing numbers from overlapping normal distributions produces perforamnce predictable by
SDT. These findings are particularly interesting in view of the similarity between the task of

categorizing numbers and that of determining the status of a mechanical system based on numerical
values that represent sensor readings. Examples of the use of SDT to evaluate performance in
decision tasks are reviewed. The methods and assumptions of SDT are shown to be effective in
the measurement, evaluation, and prediction of human performance in such tasks.

INTRODUCTION

The purpose of this paper is to discuss
the relevance of Signal Detection Theory
(SDT) to the evaluation of human decision
making. SDT is typically thought of in terms
of observers detecting faint, experimental
stimuli in the hopes of revealing something
about the sensory system of the observer.
Such an experiment takesadvantage of only a
partof the informationSDT can provide and
assumes that SDT is only applicable to

describing sensory functions. This paper
will review the scope of SDT and report
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specific examples of application of SDT to
more cognitivetasks.

The contributionof SDT isitsattempt

to explain detectionperformance by taking
into account both the sensitivityand the

response biasof the observer. An observer,

say a fighterpilot,isaware of an objectinthe
distance.As the distancebetween the pilot's

craftand the perceived objectdecreases,the

pilot'sabilitydetect an object would be
expected to increase. In addition,the pilot

would be expected tomore accuratelyidentify

the objectas a hostileaircraft,simply a dark

spotinclouds,or as some otheruninteresting

object.The pilot'sdecisionthatan objectisa
hostile aircraft is also a function of

willingnesstoreporta targetand in doing so
to risksounding a falsealarm. SDT offers
ex danationsfor thedifficultyencountered in

dc,ectingor discriminatingobjects,and how
a criterionfor responding is established.

SDT has contributed greatly to the

revitalizationof interestin the study of

psychophysics, but the theory and methods
are not limited to the study of sensory

stimuli.
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Psychophysics is the study of the
relationship between physical events and the
resulting mental events. Two basic questions
are asked: does a physical event result in a
mental event, and do incremental changes in
physical events result in equal increments in
mental events. For example, can the
observer detect the onset of a single pixel on
a dark computer screen? Can the observer
tell the difference between the onset of one

pixel and two pixels? These questions
address the sensitivity of the visual system,
the readiness of the observer to report an
event, and the scale of perceptual change.

In psychophysics we often assume that
the observer could appropriately assign a
response to the event if only the event could
be clearly sensed. On the other hand, some
events that are clearly sensed are difficult to
assign to a response. Classification of a bat
as a mammal or a bird would be difficult on
the basis of a limited set of information

because so many of the obvious
characteristics of the bat seem to match those

we attribute to bird. While SDT has always
been used to understand sensory tasks, SDT
methods are becoming more widely used in
addressing classification tasks. Swensson
(1980) used SDT to describe the performance

of radiologists in interpreting chest x-rays.
Swets (1988) argued for the use of SDT
methods in measuring the accuracy of
diagnostic systems providing examples from
the medical field, weather forecasting, and
materials testing. Parasuraman and Wisdom
(1985) suggest the use of SDT to evaluate the
rules of expert systems and as a guide for
designing systems in which automated expert
systems assist human operators. Sorkin and
colleagues (Sorkin & Woods, 1985, Sorkin
& Robinson, 1984, Sorkin, Kantowitz, &
Kantowitz 1986) have dealt with the issue of
automated expert based alarms in system
control environments. In each of these cases,

SDT is applied to problems of categorizing
easily detected information as being either
meaningful or inconsequential. SDT can be
used to describe the process by which one

category is distinguished from another and
how response biases affect responding. The
body of this paper details the applicability of
SDT to these problems and describes the use
of SDT methods to examine the processing of
multiple sources of information.
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Figure 1. Hypothetical probability
distributions for noise (n) and signal-noise
(sn).

SDT: THEORY, METHODS, & METRICS

Theory

SDT attempts to account for differences
in sensitivity and response bias starting from
the assumption that uncertainty surrounds the

processing of an event. Uncertainty is
present because a variable level of

background noise surrounds every interesting
event, or in SDT terms, signal. Borrowing
an example from Baird and Noma (1978),
consider the circumstance that you are
listening to the stereo and the phone rings.
The sound from the stereo is background
noise and the phone ring is the signal of
interest. The more distinct the signal is from
the noise, the more likely the signal, in this
case the ringing phone, will be detected.
Uncertainty arises from the fact that on some
occasions what you have heard could as
easily be attributed to the stereo alone as to
the ringing phone with the stereo in the
background.

Figure 1 helps us to think of the

uncertainty of detecting a signal in a more
detailed manner. The continuum X is the

evidence gathered by the observer from some
event. The noise present at any given time is
expected to be a random observation from a
distribution of noise events having a mean
and a variance an. The presence of a signal
along with the noise adds a constant, k, to the
values in the noise distribution resulting in
the signal-noise distribution with a mean rtsn
and variance equal to that of the noise

distribution. As can be seen in the figure,
intermediate levels of evidence are included
under the distributions for both the noise and

signal-noise distributions; and therefore, the
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Figure 2. The response criterion, I_,
separates the noise and signal-noise
distributions into four response categories:

hit, miss, false alarm, and correct rejection.

assignment of evidence to one distribution or
the other is uncertain. The more variable the

noise or the smaller the change introduced by

adding the signal, the more uncertain the
assignment of intermediate levels of evidence
to one distribution or the other.

Two additional factors affect the

observer's response selection: the
establishment of a response criterion and the
likelihood of a signal occurring. When an
observer establishes a fixed response

criterion, 13, responding "yes" to evidence
above 13and "no" to evidence equal or below,

responses are relegated to one of four
categories (see Figure 2). Responding "yes"
will result in either a correct detection (hit)

given that a signal was present or a false
alarm given only noise. Responding "no"
will result in either a correct rejection

given noise or a missed (miss) signal given
the presence of a signal. An optimal
placement of 13would minimize the likelihood
of false alarms and misses while maximizing
the number of hits and correct rejections.

Alternative criteria are possible. In the

example of the fingin.g phone above, if one
were expecting a very important call (but not
important enough to turn off the stereo!) one
would be more willing to risk picking up the

phone when it hadn't rung (false alarm) than
miss a real call. This liberal strategy would

move 13 to the left on the _ axis. A
conservative strategy would move 13to the

fight and result in the commission of few
false alarms at the expense of missing some
calls. Varying the costs and benefits of
different responses alters the placement of 13

by an observer. The likelihood of a signal
also alters the response selection of the

observer. Up to this point we have been
assuming that the chance of a signal was
equal to that of noise alone. On the other
hand, as the likelihood of a signal declines
from 50% to 10%, we would expect to see a
similar reduction in the number of yes or

signal present responses.
In summary, SDT is based on the

assumption that there is uncertainty regarding
the classification of an event. That

uncertainty is related to the variability of
noise and the resulting overlap between the
noise and signal-noise distributions. Ability
to detect the signal in noise increases as the

overlap of the distributions decrease.
Responding is also affected by response bias
in terms of willingness to respond yes and/or

the expectation regarding signal frequency.

Methods

The methods proposed by SDT involve

manipulation of the signal, the responses,
and the expectation/reward for a particular

type of responding. As implied in the above
examples, the task generally involves a
observer being directed to make an
observation and report whether the interval of
observation contained a signal or only noise.
In this case, the presence of a signal is
contrasted with the absence of a signal. SDT
can also be used to describe the processing of

multiple signals (see Macmillan & Creelman,
chap. 10, 1991). The use of multiple signals
allows investigation of the observer's ability
to identify the signals (signal A versus signal
B) and the ability to detect the combination of
multiple signals against noise.

The responses required of the observer
can also be varied. The two most common

variations being the yes/no response used in

the preceding examples and the multiple
interval rating. The yes/no response
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produces a single estimate of the response
criterion used by the observer. The rating
method requires the observer to provide a
measure of the certainty of responding. For
instance, the observer could be told to
respond using the numbers one through six
with one representing absolute certainty of a
noise event and six representing absolute
certainty of a signal event. The ratings can
then be summed into five levels of criterion
with rating 1 versus the other five being the
most liberal criterion. The advantage of
collecting rating responses lies in being able
to determine sensitivity at varying levels of
response bias. If the sensitivity varied across
levels of response bias, it would indicate that
On is unequal to Osn. An assumption of equal
variance might result in inappropriate
comparisons among levels of sensitivity, a
condition that can be avoided when rating
responses are collected (see Macmillan &
Creelman, 1991, pg.82-85). Responding
can also be manipulated by altering the
likelihood of a signal, or the
reward/punishment for exceeding a level of
one of the four response categories (hit,
miss, false alarm, correct rejection).

Metrics

The primary metrics developed in
conjunction with SDT quantify two kinds of
information: the sensitivity of the observer
and the observer's response bias. Sensitivity
is measured as the distance between the
means of the noise and signal-noise
distributions taking into account the variance
of the distributions and is measured as d'.

d'-- gsn-gn
On

Response bias, _, is measured by the
ratio of noise to signal probabilities, multiplied
by the difference between correct rejections
(cr) and false alarms (fa) divided by the
difference between hits (h) and misses (m).

6= P(n) xCr-fa
p(sn) h'_

Returning to Figure 1, it should be clear
that given equal likelihood of noise and
signal-noise, the optimal 13would divide the
distributions into equal proportions of hits
and correct rejections, thereby resulting in a
of 1. Changing the rewards for a particular

response type, say punishing false alarms,
necessarily shifts _ one way or the other.
The resulting change in the distribution of
responses among the four possible outcomes
provides a measure of _.

UNCERTAINTY

Uncertaintywith regardto signaland
noise lies at the heart of SDT. The

uncertainty is attributed to variability in the
productionand processingof thenoiseand
signals. In many psychophysical
experiments,the signalsare taken to be
relativelystable.Variabilityisintroducedby
the processingchannel through which the
signalis encoded. For instance,a visual
stimulusisexpectedtobe relativelyconstant.
On the other hand, the perceptionof the
stimulusismade variableby random neural
firings,theeffectsof spatialsummation,and
the retinallocationon which the image is
projectedto name a few. Each of these
effectsservestoincreasetheoverlapbetween
thenoiseand signal-noisedistributions.

The critical point for this presentation is
that variability can be introduced in other
ways as well. Consider the task of sorting a
box of school photos into two classes: former
classmates versus persons unknown to you.
The photo is a fixed image and your
perception is not degraded by the only getting
a brief look at the photo or the angle at which
the photo is displayed. You could describe
the photo with a clarity that would allow
some other person to select it from the box.
The difficulty that you encounter in
classifying the photo is not related to your
processing the image. Instead, the difficulty
is related to your ability to extract from
memory the characteristics that would allow
you to distinguish former classmates from
people you have never seen before. The
similarity in facial features and the difficulty
with assigning features to names results in a
noise distribution.

Noise and signal-noise distributions can
be produced using numbers. Numbers are
reliably and accurately identified by most
adults, yet meaningful categories of numbers
can have a great deal of overlap. For
instance, the heights of men and women have
different means, yet if you were given an
intermediate height, say 5'6", there would be
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uncertaintywith regardto knowing whether
the height was that of a woman or a man. In
an effort to determine whether [5is fixed or
changes over time, Kubovy, Rapoport, &
Tveraky (1971) conducted an experiment
using the height classification task. The
observed d" was consistent with the d"
expected given the means and variance of the
numerical distributions used as stimuli.
Measures of the criterion supported a

deterministic, fixed [_ strategy for criterion
setting as opposed to a probabilistic, variable
[5stratel_y. Numbers have also been used as
stimuli m studies examining the convergence
of various psychophysical methods on
perceptual scaling (Weissmann,
Hollingsworth, & Baird, 1975), and the
independence of sequential presentations of
stimuli with respect to responding (Ward,
Livingston, & Li, 1988).

In system control environments, the
task of deciding whether the numerical
temperatures from a cooling mechanism are
more representative of a normal operating
condition than a malfunction is very similar to

deciding whether a given height is more
likely to represent that of a man or a woman.
The certainty with which the operating status
of a system can be determined from an
observation on the system is in pan a
function of the distance between the means of
the normal and malfunction distributions and
the extent to which the distributions overlap.
Therefore, the performance of an operator
deciding that the system is okay or failing can
be evaluated in terms of SDT.

APPLICATION

To illustrate the application of SDT to a
human decision making problem, we will
describe the method and analysis used in a
study we conducted. In this research, we are
interested in how people use information
from a variety of sources, particularly when
one source, the expert advisor, is expected to
be a more accurate source of information.
Previous studies have looked at the effects of
varying the criterion information provided by
an expert advisor. The basic method used by
Sorkin, Kantowitz, & Kantowitz (1988) was
to compare decisions made by observers
using system data (digital gauges) with

observers using the gauges in conjunction
with expert advice. The expert advice is
provided in either a 1 bit (nominal,
malfunction) or a 2 bit (certain nominal,
possible nominal, possible malfunction,
certain malfunction) message indicating the
criterion used for a given event. The study
showed that the addition of expert advice
improved decision accuracy and gave some
indications of extra advantage for the 2 bit
message over the 1 bit.

Sensitivity, or d', of the system was
established by the mean and standard
deviation of the normal distributions from
which the values for a nominal and
malfunction event were taken. The
sensitivity of the expert advisor was set at a
level higher than that of the four gauges.
This difference made it difficult to detenmne
whether the improvement in performance was
the result of combining the information from
the gauges with the expert advice _ simply
the result of relying on the exl:_ - aovlce, we
set out to determine what information me
observers used by conducting a study in
which the sensitivity of the expert advice
varied from worse than that of the gauges to
better than that of the gauges.

The generation of stimuli and the
analysis of these studies are both dependent
on SDT. The stimuli were generated in much
the same way as described in the height
example above. The two categories, system
normal and system malfunction, were defined
as having numerical means of 3 and 4,
respectively. For the gauges, the standard
deviation for each distribution was set at
1.54, yielding an expected d" for each gauge
of .649 and a combined d" of 1.298 for the
four gauges, as will be explained below. The
standard deviation of the distribution on
which the automated expert based its advice
was varied, resulting in d" levels of .191,
.929, 1.667, and 2.774. In order to elicit
measures of sensitivity across a variety of
response criteria, responses were collected
using a rating scale method with six response
categories.

Manipulating the d" of information from
the expert advisor allowed us to examine the
differential effect of the advice in the face of a
constant level of information from the
gauges. From a theoretical perspective, the
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d !1.2

Noise

Noise Signal 1
Figure 3. The discriminability between two
stimuli, signal I and signal 2, is predicted by
the distance between their means in d" units.

use of information could be hypothesized as
either the result of combining all the
information or the result of selective filtering
of the available information. SDT provides
predictions regarding the combination of
information (Tanner, 1956, Macmillan &
Creelman, chap. 10, 1991, or for a
comparison between the predictions of SDT
and other theories see Massaro & Friedman,
1990). A common prediction discussed in
the SDT literature takes advantage of d" as a
measure of distance. Take the case of two
signals: snl and sn2 (see Figure 3).

Independence is represented in the 90 ° angle
of the intersection of the vectors. The two
sourcesof informationareassumed to share a

common noise distribution (n 1,2). Using
geometry, if sensitivity to snl is described by
d'l and sensitivity to sn2 is described by d'2,
then the Pythagorean theorem allows us to
predict the discriminability of snl from sn2 as

,2 ,2 .2 , ,
d 1,2=d 1+d 2-2d ld 2cos(0).

When the signalsareindependent(0=90o,

cos(90°)=0)and d'l isequaltod'2 then

d'l.2f'_d'l.

This line of thinking can be extended to
predicting the detectability of the combined
evidence, snl and sn2, against the noise
distribution by changing our focus from
calculating the distance between the means of
snl and sn2 to calculating the distance
between snl,2 and nl,2. Changing the

orientation of the legs of the triangle, it is
obvious that the calculation remains the same.
This prediction, referred to as the Euclidean
metric, can be extended to m independent
information sources having equal d's by the
formula q'--'md'. The Euclidean metric predicts
that performance will exceed that expected
from any of the component parts (see Figure
4, panel 1).

The simplest filtering prediction
suggests that one source of information will
be processed to the exclusion of other
sources. Two sources are possible: the
expert advice and the gauges. If only the
expert advice is used, then one would expect
a linear increase in performance
corresponding to the increase in d" of the
expert advice (see Figure 4, panel 2). On the
other hand, if the gauges were used, one
would expect no change in performance as
the d" of the advice improved (see Figure 4,
panel 3).

An alternative model based on filtering
would suggest that through repeated
exposure, the observer learns the relative
sensitivity of available sources, and in some
manner weights the contribution of the
sourcesinaccordance with tbe d'. The

Euclidean

Gau_so_y

Expert only

4

SelectiveFiltering

Figure 4. The effect of increasing expert
system sensitivity on overall performance for
four hypothesized outcomes based on
combination of information (Euclidean) and
filtering (expert only, gauges only, and
simple selection).
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Figure 5. Observed perfofirmnce showing
the effect of expert system sensitivity on
operator performance in the system control
task.

simplest model based on this approach would

predict that the observer would use only the
source having the highest d'. The result
would be a decision based on the information

from the gauges when the advice is less
sensitive than the gauges and on the advice
when the advice was more sensitive than the

gauges (see Fi .g_n'e 4, panel 4).
The experiment was conducted and the

best fit for the data was a curve that increased

at an increasing rate (see Figure 5). This
result rules against accepting the filtering
models that are based on only one source of
information. Differentiating between the
Euclidean metric model and filtering based on
d" is more difficult. Both would be predicted
to be curvilinear and increasing at an

increasing rate given the d's provided in the
task. The primary distinction between the
two models relies on location of the curve.
The Euclidean model predicts performance
that exceeds that of either source. The

faltering model predicts performance equal_to
the more sensitive of the sources. In

practice, observed d's frequently fail below
predicted d's. As such, selecting between
models based on location of the curve has

problems in addition to the variability of the
data. Additional experiments manipulating
the observer's knowledge of the sensitivity of
each information source are being conducted

to distinguish between the Euclidean and
filtering models.

CONCLUSION

In conclusion, SDT provides an
assessment of both the decision maker's

sensitivity and response bias. Sensitivity can
be a function of the variability of noise and

signal processing inherent in sensory
processes, or, as with numbers, a function of
the uncertainty with which individual
numbers are categorized. In numerous
studies in which numbers have served as

stimuli the theory and methods of SDT have
been shown to be a valuable tool +for

explaining the decision making performance
of observers. This is particularly valuable in
view of the similarity between assigning
numbers in a laboratory task and the task of

using numbers to categorize the status of a
mechanical system. Studies currently being
conducted demonstrate the value of SDT in

describing and predicting the influence of
automated expert system advice on decision
making. In one instance, SDT has been used
to demonstrate that decision makers process

both numerical system data and expert system
advice in a task requiring assessment of

system status.
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